
LLFUZZ: An Over-the-Air Dynamic Testing Framework
for Cellular Baseband Lower Layers

Tuan Dinh Hoang1, Taekkyung Oh1, CheolJun Park2∗, Insu Yun1∗, Yongdae Kim1

1KAIST, 2Kyung Hee University

Abstract
Memory corruptions in cellular basebands are critical be-

cause they can be remotely exploited over-the-air, resulting in
severe consequences such as remote code execution, denial of
service, and information leakage. While previous research has
made significant contributions to detecting memory corrup-
tions in basebands, particularly in layer 3 protocols (e.g., NAS
and RRC), the lower layers have received comparatively less
attention, with only a few works exploring them in a limited
and non-systematic manner.

In this paper, we present Lower-Layer Fuzzer (LLFUZZ), a
novel over-the-air dynamic testing framework that discovers
memory corruptions in baseband lower layers. LLFUZZ sys-
tematically targets lower layers, which are the PDCP, RLC,
MAC, and PHY layers of the cellular stack. Testing these
layers presents unique challenges due to their multiple chan-
nels and packet structures that can be dynamically config-
urable. To address these complexities, LLFUZZ implements
a channel-driven, configuration-aware fuzzing approach to
systematically explore multiple channels. During the testing
process, LLFUZZ actively modifies layer-specific configura-
tions through signaling messages to trigger and test diverse
packet structures, particularly those rarely used in commercial
networks. Moreover, LLFUZZ leverages 3GPP specifications
to generate test cases tailored to the packet structures of the
lower layers. This ensures that the test cases are syntactically
valid and capable of reaching the target layers without being
prematurely discarded. In our evaluation of 15 commercial
basebands from five major vendors, LLFUZZ uncovered nine
previously unknown memory corruptions: two in PDCP, two
in RLC, and five in MAC layers. These findings demonstrate
LLFUZZ’s effectiveness in finding critical memory corrup-
tions in baseband lower layers.

1 Introduction

Cellular basebands play a crucial role in mobile communica-
tion systems, handling a wide range of tasks—from managing

* They are co-corresponding authors.

Table 1: Supported layers of existing tools and LLFUZZ.

Tool Gen Approach Bug Layers ST CH CO

LTEFuzz [31] LTE OTA L L3 – – –
DoLTEst [43] LTE OTA L L3 ✓ – –
BaseComp [29] LTE Reversing L L3 – – –
BaseSpec [30] LTE Reversing M L3 – – –
BaseSAFE [39] LTE Emulation M L3 – – –
FirmWire [24] LTE Emulation M L3 – – –
BaseBridge [32] LTE Emulation M L3 ✓ – –
LORIS [48] LTE, 5G Emulation M L3 ✓ – –
Goos et al. [15] 2.5G Emulation M L2, L3 – – –
5Ghoul [20] 5G OTA M L2, L3 ✓ – –

LLFUZZ LTE OTA M L1, L2 ✓ ✓ ✓

ST: Stateful Testing, CH: Channel-driven Testing, CO: Configuration-aware
Testing, L: Logical Bug, M: Memory Bug, OTA: Over-The-Air Testing.

critical signaling protocols to providing essential services
such as voice calls and data transmission. Unfortunately, their
critical functions, coupled with the inherently open nature
of wireless interfaces, make them attractive targets for at-
tackers capable of transmitting over-the-air signals via Soft-
ware Defined Radios (SDRs). Consequently, various attack
models have been developed to exploit baseband vulnera-
bilities, including passive eavesdropping [17, 25, 38], fake
base stations [36], signal overshadowing [16, 37, 60], and
man-in-the-middle attacks [50]. These attacks utilize numer-
ous vulnerabilities across multiple baseband layers, posing
substantial threats to user security and privacy.

One notable class of vulnerabilities in basebands is mem-
ory corruption. This vulnerability occurs due to programming
errors, such as mishandling pointers when decoding messages
from cell towers. The consequences of memory corruption
can be severe, leading to arbitrary code execution, denial of
service, and information leakage. For that reason, memory cor-
ruption has become a topic of great interest to both academia
and industry. For example, Marco Grassi et al. exploited a
vulnerability in the Huawei Kirin baseband to modify the
International Mobile Equipment Identity (IMEI) number [23].
Google Project Zero also reported several memory bugs in
Samsung’s Exynos basebands [61], and more recently, Berard



PHY

MAC

PDCP

IP
RRC

NAS

RLC

L
3

L
2

L
1

Core NetworkBase StationUECellular protocol stack

AP

BP

Figure 1: Cellular network architecture and stack.

and Dehors demonstrated a zero-click RCE on Tesla through
its cellular modem [10].

Given the critical impact of memory corruptions, re-
searchers have proposed several techniques to detect them
in basebands. Many memory corruption vulnerabilities have
been revealed through reverse engineering [12, 13, 21, 22, 23,
29, 30, 33, 57, 58], emulation-based fuzzing [24, 32, 39, 48],
and over-the-air fuzzing [41, 47, 56] approaches. While these
works have been effective, they primarily focused on layer
3 (i.e., NAS and RRC), as these are the most well-known
control plane protocols in cellular networks.

Layer 2 (i.e., MAC, RLC, PDCP) and layer 1 (i.e., PHY)
are often overlooked, despite their critical role in basebands.
A few works (Table 1) have attempted to fuzz layer 2, but they
either targeted older cellular generations (i.e., 2G, 3G) [15]
or did not systematically test the lower layers [19, 20]. For
instance, Goos and Muench [15] extended FirmWire emula-
tion to support fuzzing layer 2, but it only covered the lower
layers of General Packet Radio Service (GPRS) and Global
System for Mobile Communications (GSM), which are older
cellular generations. Garbelini et al. proposed a tool called
5Ghoul [20] that can fuzz layer 2 and layer 3 of the 5G base-
bands. They identified three layer 2 vulnerabilities by mu-
tating elementary protocol messages implemented in open-
source cellular networks, guided by grammar information
extracted from Wireshark’s packet dissector. However, their
approach cannot effectively cover rarely used messages and
configuration-dependent behavior of basebands, which are
often critical for uncovering corner-case vulnerabilities.

In this paper, we present LLFUZZ, an over-the-air dynamic
testing framework designed to discover memory corruptions
in the lower layers of cellular basebands. Testing these lay-
ers is challenging due to the presence of multiple channels
and the fact that various packet structures are configurable
by the upper layer (i.e., the RRC layer). In particular, during
the Attach procedure, the cell tower transmits signaling mes-
sages (i.e., RRC messages) to the baseband, which activate
lower-layer channels (i.e., logical channels) and provide layer-
specific configurations that define the corresponding packet
structures. Without accounting for these properties, it is not
possible to systematically test diverse packet structures in the
lower layers.

To address these challenges, LLFUZZ employs a channel-
driven, configuration-aware fuzzing approach for in-depth
testing of the lower layers. LLFUZZ first tracks the establish-

ment of logical channels using our newly defined channel-
oriented states, and then actively modifies layer-specific con-
figurations to test diverse packet structures. This approach
allows LLFUZZ to explore a broader range of packet struc-
tures, particularly those rarely used by commercial cell towers
or not supported by open-source tools. Given the slow speed
of over-the-air testing, LLFUZZ also relies on specifications
when generating test cases. As a result, LLFUZZ’s test cases
are less likely to be prematurely rejected by basebands, in-
creasing the likelihood of uncovering memory corruptions.

We evaluated LLFUZZ on 15 commercial basebands from
five major vendors: Qualcomm, MediaTek, Samsung, Google
Tensor, and Huawei Kirin. Our evaluation uncovered a total
of nine memory corruptions across multiple layers: five in
the MAC layer, two in the RLC layer, and two in the PDCP
layer. These findings demonstrate that memory corruptions
are prevalent in the lower layers of basebands, emphasizing
the need to address vulnerabilities in these layers with the
same level of attention as those in the higher layers.

In summary, this paper makes the following contributions:
• We present LLFUZZ, an over-the-air dynamic testing frame-

work specifically designed to detect memory corruptions in
the lower layers of cellular basebands.

• We propose a channel-driven, configuration-aware fuzzing
approach that enables systematic testing of lower-layer pro-
tocols.

• We evaluated LLFUZZ on 15 commercial basebands from
five major vendors and found a total of nine memory cor-
ruptions.

• To foster future research, we release LLFUZZ as an open-
source tool: https://github.com/SysSec-KAIST/LLFuzz.

2 Background

2.1 Cellular Protocol Stack

Figure 1 illustrates the overall cellular network architecture
and protocol stack. The network consists of three main com-
ponents: the User Equipment (UE), the base station (eNB),
and the core network. There are two main processors in the
UE, the application processor (AP) and the baseband proces-
sor (BP). The BP consists of three main layers: 1) the physical
layer (layer 1 - PHY), 2) the data link layer (layer 2), and 3) the
network layer (layer 3). Layer 2 is further divided into three
sub-layers: the Medium Access Control (MAC) sub-layer,
the Radio Link Control (RLC) sub-layer, and the Packet Data
Convergence Protocol (PDCP) sub-layer. Hereafter, these sub-
layers will be referred to as layers for simplicity.

2.2 Lower Layers in Basebands

Lower layers (i.e., layer 1 and layer 2) in the cellular protocol
stack facilitate radio communication between UE and eNB by
handling critical functions: decoding signals, demultiplexing

https://github.com/SysSec-KAIST/LLFuzz


Radio
Bearer

Logical
Channels

Transport
Channels

Physical
ChannelsPDCCHPDSCHPBCH

DL-SCHBCH DCIPCH RAR

PCCH BCCH DTCH DTCHDCCH DCCHCCCH

Paging
MIB
SIB

PDCP

SRB0 SRB1 SRB2 DRB0 DRB7

User plane data

State 1

State 2
State 3

Control plane data

State 4

RLC

MAC

PHY

Figure 2: LTE logical channels and state definitions [51].

data streams, mapping data to logical channels, and transfer-
ring it to upper layers (i.e., layer 3). These processes ensure
seamless interaction between network components, forming
the foundation for reliable cellular communication.

As cellular standards have evolved, lower-layer structures
have grown more complex, incorporating advanced mecha-
nisms like Multiple-Input Multiple-Output (MIMO), Carrier
Aggregation (CA), Timing Advance, and power control in
LTE and 5G—reflecting demands for higher throughput and
improved performance.
PHY layer. The PHY layer handles all the physical aspects of
the radio interface, including modulation, coding, and trans-
mission of data over the air interface. To guide UE in decoding
the incoming downlink signals and sending uplink signals,
the eNB sends the Downlink Control Indicator (DCI) mes-
sages, which contain the Radio Network Temporary Identifier
(RNTI) of the target UE. This DCI acts as the header of the
data packets sent in the PHY layer. It consists of time-domain
and frequency-domain resource allocation information, mod-
ulation and coding schemes, and other control information.

There are multiple formats of DCIs, each used for different
transmission modes (TMs). For example, the DCI format 1 is
used in TM1, in which UE and eNB only use a single antenna.
Figure 3d shows the structure of DCI format 1 in a base sta-
tion with a 20MHz channel, Frequency Division Duplexing
(FDD), allocation type 0, and no CA. This DCI 1 consists of
a Resource allocation header (R), Resource Block (RB) assign-
ment type 0, Modulation and Coding Scheme (MCS), Hybrid
Automatic Repeat reQuest (HARQ) process (H), Redundancy
Version (RV), and Power Control (PC) fields.
MAC layer. The MAC layer is responsible for managing
random access and multiplexing data streams from multiple
channels. Its packets, referred to as MAC Protocol Data Units
(PDUs), include several types. For example, the Downlink
Shared Channel (DL-SCH) PDU delivers user data and con-
trol information, while the Random Access Response (RAR)
PDU allocates radio resources and identifiers to UEs during
the Random Access Channel (RACH) procedure.

Both DL-SCH and RAR PDUs can contain multiple sub-
headers and sub-payloads, with the sub-payloads referred to
as MAC Service Data Units (SDUs). These PDUs support

various sub-header formats, each with multiple fields. For
example, the DL-SCH sub-header includes fields like Logical
Channel ID (LCID), Length (L), and Extension (E), as shown
in Figure 3a. The LCID identifies the logical channel, the
Length specifies the size of the MAC SDU, and the Extension
indicates the presence of additional sub-headers. Additionally,
DL-SCH PDUs can carry MAC Control Elements (CEs) to
manage the radio connection between the UE and the eNB.
RLC layer. The RLC layer is responsible for the segmentation
and reassembly of data packets, reordering data sequences,
and performing layer 2 retransmissions. Data transmission
in this layer can be configured in three modes: Transparent
Mode (TM), Unacknowledged Mode (UM), and Acknowl-
edged Mode (AM); each mode has its own packet structures.
Figure 3b shows an example of the RLC AM Data PDU struc-
ture. This structure consists of a fixed header, an extension
header, and a payload. Some important fields in the fixed
header are Sequence Number (SN), Polling Bit (P), Exten-
sion Bit (E), and Length Indicator (LI). Notably, when the
RLC PDU contains multiple segments, the extension includes
multiple [E, LI] pairs to indicate the length of each segment.
PDCP layer. The PDCP layer ensures security and integrity of
transmitted data. It compresses IP headers (when enabled), ap-
plying ciphering and integrity protection, and adding a PDCP
header that varies between user data and signaling messages.
One example of the PDCP Data PDU structure for signaling
messages is shown in Figure 3c. This structure consists of a
header with a sequence number (SN) field, payload, and Mes-
sage Authentication Code (MAC-I), though the MAC-I is only
present in control plane messages where integrity protection
is required. Note that the PDCP layer only encrypts and pro-
tects the payload (i.e., layer 3 data), while the PDCP header
remains unprotected even after the Authentication and Key
Agreement (AKA) procedure.
Logical channels in lower layers. In LTE, logical channels
define data types transmitted between UE and eNB. To sup-
port this, the MAC layer uses the LCID field in its header to
identify the target channel. Also, the RLC and PDCP layers
are divided into multiple entities, each handling data from a
specific logical channel. There are 5 main logical channels in
LTE: 1) Broadcast Control Channel (BCCH), 2) Paging Con-
trol Channel (PCCH), 3) Common Control Channel (CCCH),
4) Dedicated Control Channel (DCCH), and 5) Dedicated Traf-
fic Channel (DTCH) (see Figure 2). Since there are two dif-
ferent DCCH channels (for signaling before and after AKA),
we refer to them as DCCH-1 and DCCH-2, respectively.

2.3 Attach Procedure

The UE performs the Attach procedure to connect to the
network (Figure 4). During this process, it establishes a radio
connection with the eNB and completes the AKA procedure
to secure the connection. From a lower-layer perspective,
this procedure establishes logical channels for transmitting



F2 E LCIDR

F2 E LCIDR

F L

L

F2 E LCIDR

R Timing Advance CommandR

…

…

Sub-header 1

Sub-header 2

Sub-header 3

MAC CE

Sub-payload 2

Sub-payload 3

(a) MAC DL-SCH PDU structure.

SN

RF P FI E SN

E LI1

LI1 E LI2

LI2

Data chunk 1

Data chunk 2

Data chunk 3

D/C

(b) RLC AM Data PDU structure.

R R PDCP SNR

…

MAC-I (cont.)

MAC-I (cont.)

MAC-I (cont.)

MAC-I

Data

(c) PDCP Data PDU structure.

RB allocation type 0R

RB allocation type 0 (cont.)

RB allocation type 0 (cont.)

(cont.) H

H (cont.)

MCS

RV PC Padding

(d) DCI structure.

Figure 3: Examples of structures in lower layers.

Layer-specific configurations

State 3:
• Radio ID: C-RNTI
• Channels: CCCH, DCCH-1

State 4: 
• Radio ID: C-RNTI
• Channels: CCCH, DCCH-1, 

DCCH-2, DTCH

RAR

RRC Connection Reconfiguration

AKA

RRC Connection Setup

State 2:
• Radio ID: C-RNTI
• Channel: CCCH

Random Access Preamble

RRC Connection Request

State 1:
• Radio ID: RA-RNTI 
• Channel: None

BP

Figure 4: LTE Attach procedure and channel-oriented states for
lower layers.

different types of data. Specifically, the RAR message enables
CCCH, RRC Connection Setup enables DCCH-1, and RRC
Connection Reconfiguration enables DCCH-2 and DTCH.
Layer-specific configurations. RLC and PDCP packets
mapped to DTCH can be customized with various config-
urations delivered via RRC Reconfiguration messages during
the Attach procedure. For example, the RLC UM Data PDU
can be configured with either a 5-bit or 10-bit SN, while the
AM Data PDU supports 11/15-bit LI and 10/16-bit SN fields.

3 Gaps in Previous Works

There have been several approaches to detect memory corrup-
tion vulnerabilities in cellular basebands. However, previous
works have the following gaps, which motivate our work.
Mainly focused on layer 3 protocols. Most prior work
primarily targets memory corruption bugs in layer 3 pro-
tocols (e.g., NAS and RRC). BaseSpec [30] and BaseC-
omp [29] performed reverse engineering and conducted a
comparative analysis between layer 3 implementations and
their corresponding cellular specifications. Although effec-
tive, these approaches are constrained to layer 3 protocol
messages that are explicitly defined in tabular formats. To
improve automation and scalability, subsequent studies such
as FirmWire [24] and BaseSAFE [39] introduced emulation-

based approaches, enabling direct exposure of fuzzing entry
points for layer 3 functionality. Complementary to emulation-
based efforts, over-the-air fuzzing techniques—including
those by Mulliner et al. [41], Wang et al. [56], and Potnuru
and Nakarmi [47]—have targeted layer 3 protocols and ser-
vices through the mutation of live wireless traffic. Despite
their different methodologies, both emulation-based and over-
the-air approaches have mainly focused on testing layer 3,
overlooking the lower layers of the baseband.

Layer 3 has attracted more attention than the lower layers
due to its broader protocol definition, which supports critical
functions like authentication and mobility management (Ta-
ble 1). However, as cellular technologies have evolved from
LTE to LTE-A and LTE-Pro, the lower layers have become in-
creasingly complex, incorporating numerous new features and
dynamic configurations. Moreover, the lower-layer messages
are never protected by encryption or integrity checks, leaving
them exposed to adversarial manipulation. Therefore, mem-
ory corruption vulnerabilities in the lower layers can be just
as critical as those in layer 3, yet remain underexplored—a
gap this work aims to address.
Limited support for lower layers. A few prior efforts have
explored testing at layer 2 of cellular basebands [15, 19, 20],
but their scope and applicability remain limited. Goos and
Muench [15] extended FirmWire [24] to emulate GSM and
GPRS layer 2 protocols, and applied AFL++ [18] to detect
memory corruptions in Samsung basebands. While their work
demonstrates the feasibility of fuzzing at layer 2, it is limited
to earlier-generation protocols. FirmWire currently lacks sup-
port for LTE lower-layer entry points, and extending it would
require significant reverse engineering. Also, Qualcomm base-
bands rely on the proprietary Hexagon architecture, making
emulation challenging. Meanwhile, 5Ghoul [20] applied over-
the-air fuzzing to layers 2 and 3 of 5G basebands. By mutating
legitimate packets captured from an open-source cellular net-
work using Wireshark’s packet dissector, they uncovered three
layer 2 bugs. However, this approach is limited to a default
gNB configuration and does not account for the wide range
of packet formats induced by layer-specific signaling (e.g.
triggering short SN fields in RLC UM). Also, since 5Ghoul
mutates default packets from the open-source gNB, the gen-
erated test cases exhibit limited structural diversity and fail



to cover malformed inputs such as very short packets or ab-
normally many sub-headers. Moreover, random mutations
often corrupt critical fields (e.g. logical channel IDs), caus-
ing early rejection before reaching the intended processing
layer. Overall, for lower layers, existing methods either lack
support for recent cellular generations or rely on oversim-
plified fuzzing configurations, and therefore do not offer the
depth and flexibility required to systematically uncover bugs
in modern implementations of these layers.

4 Overview

4.1 Scope of LLFUZZ

Our ultimate goal is to develop a systematic approach to
detect memory corruption vulnerabilities in the lower layers
of cellular basebands, as these layers have not been adequately
covered in previous works. In particular, we aim to test the
decoding functions in layer 2 (i.e., MAC, RLC, and PDCP)
and layer 1 (i.e., PHY) of the LTE protocol stack. Instead,
we do not consider the upper layers such as NAS and RRC.
Moreover, our work is limited to memory corruption bugs
that can be identified using a universal bug oracle (i.e., crash
logs). However, our test case generation method is generic, so
it can be repurposed to detect other bugs when it is combined
with a special bug oracle like LTEFuzz [31].

4.2 Threat Model
We consider an attacker who aims to exploit memory cor-
ruption vulnerabilities in basebands through the over-the-air
interface. Typically, this attacker is equipped with a software-
defined radio (SDR) and share the same cell as the target base-
band. Then, the attacker can send arbitrary packets to the tar-
get baseband using Fake Base Station (FBS) [36], Signal over-
shadowing (SigOver) [60], or Man-in-the Middle (MitM) [50]
attacks. Similar to previous works [19, 20, 41, 47, 56], we
assume the attacker lacks knowledge of the baseband’s crypto-
graphic context and therefore cannot compromise the encryp-
tion or the integrity of legitimate packets. We also assume that
the attacker knows the target’s RNTI, which can be inferred
from various existing attacks [27, 38, 42]. Even without this
knowledge, the attacker can conduct blind attacks by observ-
ing all active RNTIs within the cell [17, 25, 38].

4.3 Challenges and Approaches
In this section, we discuss technical challenges and our ap-
proaches to address them.

4.3.1 Complex Messages with OTA Testing

Unlike emulation-based testing [24, 39], over-the-air test-
ing [20, 31, 43] can be applied to basebands from various
vendors, but it comes with two significant limitations. First,

this testing process for basebands is extremely slow. While
existing fuzzers like libFuzzer [1] or AFL++ [18] can perform
thousands of tests per second, over-the-air testing can approx-
imately take 10 seconds per test case, as described in [43].
Second, as black box testing, coverage-guided fuzzing cannot
be applied, which requires monitoring the program’s behav-
ior. Consequently, random data generation approaches used
by many fuzzers like 5Ghoul [20] and AFL++ [18] fail to
adequately test the lower layers with complex constraints.
While DoLTEst [43] and LTEFuzz [31] suggested specialized
test case generation to address this issue, their solutions are
limited to the upper layers.
Our approach: Specification-guided test case generation.
LLFUZZ employs a specification-guided approach to generate
test cases for various packet structures in the lower layers.
This approach is similar to existing works [28, 31, 43]; how-
ever, we define new test case generation rules for the lower
layers, as their grammars are fundamentally different from
those of the upper layers. In particular, we carefully review the
specifications to identify possible packet structures and their
constraints (i.e., field sizes in bits). Based on these structures
and constraints, LLFUZZ determines appropriate values for
field mutations, ensuring that changes do not affect adjacent
fields. It also considers the relevant states and configurations.
This approach allows LLFUZZ to generate test cases that are
not prematurely rejected by basebands, yet are still syntacti-
cally incorrect enough to trigger bugs.

4.3.2 Diverse Messages across Multiple Channels

During our analysis of the lower layers, we discovered that,
unlike layer 3, lower layers handle multiple channels simulta-
neously. In fact, layer 3 also has multiple channels, but most
prior works [31, 43] focus on the control channel, which is
the most interesting for security testing. On the other hand,
the lower layers contain various logical channels, each of
which processes different types of messages. Thus, in-depth
exploration of these layers requires careful consideration of
the relevant logical channels.

Unfortunately, the current specifications for the lower lay-
ers do not explicitly provide UE states based on logical chan-
nels. Instead, they only describe architectures, packet struc-
tures for each protocol, and implementation guidelines for var-
ious procedures. For instance, the MAC layer specification [4]
implicitly defines two states—Random Access Procedure and
RRC Connected. Unfortunately, these implicit states are in-
sufficient to cover all the states and transitions in the MAC
layer. More seriously, the specification does not provide clear
definitions of states or transitions for other lower layers such
as PHY, RLC, and PDCP. If we do not consider these states,
the baseband will discard our test cases that are irrelevant to
the current channel status, resulting in inefficient testing.
Our approach: Channel-driven stateful testing. To address
this, LLFUZZ performs channel-driven, stateful testing. To



Figure 5: RRC Connection Reconfiguration message configuring
the RLC UM Data PDU with a 5-bit Sequence Number.

this end, we newly define four channel-oriented states for the
lower layers based on the establishment of logical channels
(Figure 4). Our definition covers UE states and transitions
during the Attach procedure, which are not explicitly defined
in the specifications. Using these states, LLFUZZ determines
which logical channels are established, which structures to use,
and which mappings to apply when generating and sending
test cases. This enables LLFUZZ to systematically explore all
logical channels for the lower-layer testing.

4.3.3 Configurable Packet Structures during Attach Pro-
cedure

While the lower layers include multiple logical channels, the
packet structures of certain channels (e.g., DTCH in RLC,
DRB (Data Radio Bearer) in PDCP) can be further cus-
tomized through various layer-specific configurations during
the Attach procedure (Table 2). As a result, effective testing
of these logical channels requires not only generating test
cases for each channel but also considering all potential con-
figurations. Unfortunately, commercial and open-source base
stations [26, 53] typically utilize only a subset of these config-
urations, limiting the diversity of packet structures observed in
their logs. Consequently, it is inefficient to solely mutate these
packets for generating test cases (e.g., 5Ghoul [20] or LTE-
Fuzz [31]), as it may fail to trigger and explore all possible
configurations.
Our approach: Configuration-aware testing. To address
this, LLFUZZ leverages a configuration-aware testing ap-
proach. As mentioned in §2, layer-specific configurations
can be delivered to the UE through RRC Connection Recon-
figuration messages (Figure 5). LLFUZZ utilizes this message
to set the UE with the target configuration, and then generates
and transmits test cases accordingly. This approach enables
LLFUZZ to trigger and test diverse layer-specific configura-
tions across channels, which were insufficiently addressed
by previous approaches. For instance, the DTCH in the RLC
layer can operate in UM mode, which can be configured to
use either a 5-bit or 10-bit SN. By default, most commercial
and open-source eNBs only leverage a 10-bit SN. LLFUZZ
can specifically test the 5-bit SN by sending an RRC Recon-
figuration message with the sn-FieldLength set to 5.

5 Design

5.1 LLFUZZ overview
As shown in Figure 6, our system design comprises three
main processes: 1) specification analysis, 2) over-the-air test-
ing, and 3) post analysis. First, we manually analyze 3GPP
specifications to define the channel-oriented states (§5.2) and
identify all packet structures for lower layers (§5.3). Based
on this, LLFUZZ generates test cases (§5.4) and injects them
over-the-air to the target baseband (§5.5). During this phase,
LLFUZZ detects baseband crashes (§5.6). Finally, we conduct
a manual analysis of bug candidates and identify their root
causes using a vendor-specific debug mode (§5.7).

5.2 Channel-Oriented States in Lower Layers
We define channel-oriented states for lower layers by man-
ually analyzing 3GPP specifications and mapping the rela-
tionships between logical channels and UE states during the
Attach procedure. Since 3GPP specifications do not explicitly
define lower-layer states or the transitions of logical channels
(Figure 2), this mapping provides a crucial foundation for test
case generation.

Among the six logical channels described in §2.2, the
CCCH, DCCH-1, DCCH-2, and DTCH channels are involved
in the Attach procedure. Each of these channels plays a key
role in carrying different types of signaling and user-plane
messages and has different packet structures, detailed in §5.3.
Since these channels are progressively established during
the Attach procedure, we define four channel-oriented states
based on active channels, as shown in Figure 4. The states are
as follows:
State 1. This state is initiated when the UE transmits a Ran-
dom Access Preamble to the eNB to request a radio connec-
tion. Since none of the CCCH, DCCH, or DTCH channels are
enabled, the baseband decodes only PDSCH packets associ-
ated with the Random Access RNTI (RA-RNTI) to detect the
RAR from the eNB. Packets identified by other RNTI types,
such as the Cell RNTI (C-RNTI), are typically ignored.
State 2. This state is activated once the baseband receives
RAR from the eNB. Following the RAR, the CCCH logical
channel becomes active, and the baseband uses the C-RNTI
assigned by the previous RAR message to decode upcoming
packets. As only CCCH is activated in this state, the baseband
ignores any packets mapped to DCCH-1, DCCH-2, or DTCH.
State 3. This state begins when the baseband receives the
RRC Connection Setup message, which activates the DCCH-
1 channel for transferring signaling messages during the AKA
procedure. During this state, the baseband and eNB establish
a secure connection with both NAS and Access Stratum (AS)
security contexts. The baseband ignores any packets directed
to DCCH-2 or DTCH, as these channels remain inactive.
State 4. After the RRC Connection Reconfiguration message
is received, the baseband enters this state where DCCH-2 and



BP

CE CCCH Padding PayloadCE CCCH Padding PayloadCE CCCH Padding Payload

Rule-guided mutation

Packet generation
CE CCCH Padding Payload

Bug 
Candidates

Oracle

Controller

ADB Interface

3GPP 
Specifications

Manual
analysis

Channel-oriented
States

Structures and
configurations

Manual analysis

Report 
to vendors

Bug 
reproducing

Root cause 
analysis

1. Specification Analysis 2. Over-the-air testing 3. Post analysis

Figure 6: LLFUZZ design.

DTCH channels become active. Layer-specific configurations
for the RLC and PDCP layers are also delivered in this RRC
message. To this end, the baseband is fully configured to
exchange both user data and signaling messages with the base
station.

5.3 Identify Lower-Layer Packet Structures
While earlier studies [57] suggested that layer 2 messages are
too short to be effectively fuzzed, our specification analysis
reveals that lower-layer packet structures are significantly
more complex and diverse than previously assumed. Table 2
provides a summary of supported packets by LLFUZZ. The
following section describes important details for these layers.
Due to space constraints, more details can be found in our
repository (https://github.com/SysSec-KAIST/LLFuzz).
MAC layer. The MAC layer packet structures vary based on
the baseband state during the Attach procedure (Figure 4). In
the initial state (State 1), the baseband uses the RAR struc-
ture, transitioning to the DL-SCH structure in States 2-4 after
decoding the RAR message. Also, the MAC layer contains 14
MAC CEs serving various functions, such as CA and power
control. Nine of these have dedicated sub-payloads [4].
RLC layer. The structure of RLC packets is determined by
the RLC mode (TM, UM, or AM) and the configurations of
the Length Indicator (LI) and Sequence Number (SN) fields.
These configurations are conveyed to the UE through RRC
signaling messages during the Attach procedure. Since logical
channels are not always active, LLFUZZ needs to determine
the correct logical channel and corresponding PDU structures
to test, as specified by the MAC layer sub-header. Totally, we
identified 18 PDU structures in the RLC layer for testing.
PDCP layer. The PDCP packet structures differ between the
control and user planes, represented by SRBs and DRBs, re-
spectively. Similar to the RLC layer, configurations for these
bearers (e.g., SN field length) are delivered via RRC signaling
during the Attach procedure. Additionally, the PDCP layer
supports several dedicated control PDUs (e.g., control PDUs
for Ethernet Header Compression feedback) that report the
status of header compression and Wireless Local Area Net-
work (WLAN) aggregation protocols. These control PDUs
are distinguished by the PDU type fields in the PDCP header.

In total, LLFUZZ supports testing 17 PDU structures in the
PDCP layer.
PHY layer. In the PHY layer, the UE expects different DCI
and RNTI formats depending on the state of the baseband,
duplexing techniques (i.e., FDD/TDD), channel bandwidth,
transmission mode, and carrier aggregation. In state 1, the
UE uses DCI format 1A scrambled with the RA-RNTI. In
subsequent states, DCI formats scrambled with the C-RNTI
are expected. Specifically, in state 2, the UE typically uses
DCI format 1A with the C-RNTI because the antenna con-
figuration has not yet been received. In states 3 and 4, the
DCI formats 1, 2A, or 2 (depending on the TM) are used,
and scrambled with the C-RNTI. Our work supports 11 DCI
structures, as shown in Table 2.

Note that the PHY layer consists not only of DCIs but also
other signal processing blocks, such as Fast Fourier Trans-
form (FFT), channel estimation, synchronization, and turbo
decoding. These blocks have fixed input and output lengths
and are typically processed in hardware components. There-
fore, it is not relevant to discover memory corruption bugs in
baseband, making them out of the scope in this work.

5.4 Test Case Generation
In the following, we describe how LLFUZZ generates test
cases for lower layers based on specification analysis. Overall,
the test case generation process consists of five main steps be-
low. More details for each layer are provided in Appendix D.
Initial packet generation. For each layer, LLFUZZ selects a
packet structure from the specification, generates valid pack-
ets, and uses them as seeds for subsequent mutation steps.
To enhance test case diversity, LLFUZZ generates packets
with varying numbers of components, particularly for struc-
tures that support multiple sub-headers, sub-payloads, or data
chunks. For instance, in the MAC layer, LLFUZZ generates
packets with 1, 3, or more than 50 sub-headers/sub-payloads.
Several fields (e.g., F, F2, E) are fixed at this step, as they
pertain to the packet format and the number of components.
Packet truncation. LLFUZZ truncates the generated pack-
ets to create various test cases with valid and malformed
header-payload combinations. For instance, it generates test
cases containing only sub-headers without sub-payloads, mis-

https://github.com/SysSec-KAIST/LLFuzz


Table 2: Supported structures in MAC, RLC, PDCP, and PHY layers.

Layer No. Packet structure Sub-header format/Configuration State Logical channel

MAC
1–2 RAR PDUs [4, pp. 110–112] RAR sub-header formats R1, R2 S1 -
3–10 DL-SCH PDUs [4, pp. 88–89] DL-SCH sub-header formats A, B, C, D, eA, eB, eC, eD S2, S3, S4 All LCIDs
11–19 14 MAC CEs⋆ [4, pp. 89–110] DL-SCH sub-header format D S2, S3, S4 Dedicated LCIDs for CEs

RLC

1–4 UM Data PDUs [5, pp. 24–26] No LI / 11-bit LI, 10-bit SN / 5-bit SN S4 DTCH
5–6 AM Data PDUs [5, pp. 27–29] No LI / 11-bit LI, 10-bit SN S3, S4 DCCH-1, DCCH-2, DTCH
7–10 AM Data PDUs [5, pp. 27–29] No LI / 11-bit LI / 15-bit LI, 10-bit SN / 16-bit SN S4 DTCH
11–12 AM Data PDU Segments [5, pp. 30–33] No LI / 11-bit LI, 10-bit SN S3, S4 DCCH-1, DCCH-2, DTCH
13–16 AM Data PDU Segments [5, pp. 30–33] No LI / 11-bit LI / 15-bit LI, 10-bit SN / 16-bit SN S4 DTCH
17–18 Status PDUs [5, pp. 33–34] 10-bit SN / 16-bit SN S3, S4 DCCH-1, DCCH-2, DTCH

PDCP

1 Data PDU for SRB [6, p. 38] Fixed configuration S3, S4 DCCH-1, DCCH-2
2–5 Data PDUs for DRB [6, pp. 39, 42, 43] 7-bit SN / 12-bit SN / 15-bit SN / 18-bit SN S4 DTCH
6–8 Status reports [6, pp. 40–41] 12-bit SN / 15-bit SN / 18-bit SN S4 DTCH
9–11 Header compression feedbacks ROHC∗, EHC†, UDC‡ [6, pp. 40, 46, 47] S4 DTCH
12–14 WLAN aggregation status reports 12-bit SN / 15-bit SN / 18-bit SN [6, p. 44] S4 DTCH
15–17 WLAN aggregation end-markers 12-bit SN / 15-bit SN / 18-bit SN [6, p. 45] S4 DTCH

PHY

1 DCI format 1A [2, p. 186] RA-RNTI, FDD S1 -
2 DCI format 1A [2, p. 186] C-RNTI, FDD S2 -
3–8 DCI formats 1/2/2A [2, pp. 184, 193, 197] C-RNTI, FDD, TMs 1/2/3/4, Allocation Types 0/1 S3, S4 -
9 DCI format 1A [2, p. 186] PDCCH order S4 -
10 DCI format 1C [2, p. 190] RA-RNTI, FDD S1 -
11 DCI format 0 [2, p. 177] C-RNTI, FDD, Allocation Type 2 S3, S4 -

⋆ Nine of which have payloads [4].
∗ Robust Header Compression.
† Ethernet Header Compression.
‡ Uplink Data Compression.

matched numbers of sub-headers and sub-payloads (e.g., 3
sub-headers but only 2 sub-payloads), or very short packets
with just 1 or 2 bytes. In the PHY layer, DCI messages are
treated as complete headers and are directly mutated in the
next step without further modifications.

Header mutation. This step focuses on mutating the remain-
ing fields within the sub-headers, excluding the fields already
fixed in the previous steps (e.g., E, F2, F fields). LLFUZZ
follows the specification to select appropriate mutation values
for each field, ensuring changes do not invalidate adjacent
fields. Particular attention is given to fields that indicate pay-
load length, such as the L fields in the MAC layer and the LI
fields in the RLC layer. For these fields, LLFUZZ uses bound-
ary values specified in the specification or large values that
exceed the total length of the sub-payloads or data chunks.
In the MAC layer, LLFUZZ mutates the critical LCID field,
which identifies the logical channel, to ensure a diverse mix of
data types (e.g., signaling, user data, and MAC CEs) within a
single test case. As the PHY layer lacks explicit length indica-
tor fields unlike other layers, LLFUZZ focuses on generating
test cases with reserved or abnormal values. For instance, in
DCI format 2A, LLFUZZ can set the Resource Block field to
the maximum value of the bandwidth, which is abnormal for
a single UE.

Payload mutation. Then, LLFUZZ mutates payloads that are
decoded and processed within the target testing layer. For in-
stance, in the MAC layer, LLFUZZ focuses on mutating RAR
sub-payloads and MAC CEs, as these contain control infor-
mation processed directly by the MAC layer. Similarly, in the
RLC and PDCP layers, LLFUZZ mutates Status PDUs and

control PDUs associated with various header compression
algorithms. For these payloads, LLFUZZ relies on their struc-
tures as defined in the specifications to determine mutation
values, ensuring meaningful and systematic testing. Notably,
LLFUZZ skips mutating payloads for upper layers, as they are
beyond its scope.
Mapping test cases to the correct logical channel. A key
challenge in testing the RLC and PDCP layers is ensuring
test cases reach the correct logical channel. If packets are
sent to inactive or incorrectly mapped channels, they will be
ignored or improperly decoded by the baseband. To address
this, LLFUZZ tracks channel-oriented states to identify active
channels and determine the necessary packet structures for
data delivery. It then generates appropriate headers for the lay-
ers beneath the testing layer. For instance, when testing SRB1
in the PDCP layer (corresponding to the DCCH-1 logical
channel), LLFUZZ encapsulates test cases into an RLC AM
Data PDU and further into a MAC PDU with LCID 00001,
which transports RLC AM PDUs in DCCH-1. This hierarchi-
cal mapping ensures test cases are accurately delivered to the
target logical channel and processed effectively.

5.5 Over-The-Air Testing
After generating test cases tailored to specific configurations
and states, LLFUZZ sends these test cases to the baseband over
the air interface. For that, first, LLFUZZ triggers the Attach
procedure between the baseband and the framework’s eNB to
transition the baseband to the desired state. Next, it delivers
the target configuration to the baseband using the RRC Con-
nection Reconfiguration message. Once the baseband moves



to the target state with the target configuration, LLFUZZ sends
the corresponding test cases to the baseband. During this pro-
cess, it monitors the ADB logcat output to detect crashes, as
described in §5.6. If a crash is detected, LLFUZZ stores the
recent test cases as bug candidates for post analysis (§5.7). If
not, LLFUZZ disconnects the UE from the eNB to reset the
baseband and begins the next iteration.
State management. To identify the baseband’s current state,
LLFUZZ monitors all signaling messages exchanged between
the baseband and the eNB during the Attach procedure. This
information is essential to ensure the baseband is in the correct
state before receiving any test cases. However, the baseband
occasionally terminates the Attach procedure without pro-
gressing to the next state due to improper handling of our test
cases, even though it does not crash. To address this, LLFUZZ
uses a dedicated timer for each state. If the timer expires and
the baseband fails to progress to the next state, LLFUZZ as-
sumes it is disconnected and toggles airplane mode via ADB
commands to recover the basebands.
Test various layer-specific configurations. LLFUZZ uses
RRC Connection Reconfiguration messages to deliver target
configurations to the baseband during the Attach procedure.
Specifically, in the RLC layer, LLFUZZ configures the RLC
mode (i.e., AM, UM) and length of SN and LI fields within
the RLC PDUs. For the PDCP layer, it configures the length
of the SN field before sending the test cases. For DCI fuzzing,
we first configure the eNB with a specific duplexing tech-
nique (FDD), channel bandwidth, and transmission mode.
Then, LLFUZZ uses the RRC Connection Setup to deliver
these configurations to the UE. This step is essential for the
UE to determine which DCI formats it should decode for
communication.
Handle unsupported configurations in srsRAN. While the
specifications define numerous configurations in the lower
layers, srsRAN [53], which is the open-source LTE base sta-
tion used in our framework, only supports a subset of them.
For example, srsRAN supports only 10-bit sequence num-
bers (SN) in RLC AM Data DPUs but not 16-bit SN. To test
this unsupported configuration, LLFUZZ uses the following
trick. LLFUZZ first uses the RRC Connection Reconfigura-
tion message, making the UE use the target configuration.
Then, LLFUZZ sends test cases immediately after the base-
band successfully processes the RRC Connection Reconfigu-
ration message. Subsequently, the baseband will process the
test cases with the intended configuration before it notifies any
errors due to the lack of eNB support for these configurations.
We confirmed that the baseband processed the intended target
configuration by observing the RRC Connection Reconfigu-
ration Complete message sent by the UE, as captured in both
the base station and XCAL log messages [59]. According
to the RRC specification [7], the UE transmits this message
upon successfully applying the configuration received from
the eNB. In this way, we can work around the limitations
of srsRAN and test unsupported configurations with a small

engineering effort.

5.6 Oracle for Detecting Crashes
LLFUZZ utilizes ADB radio logcat output to detect baseband
crashes. Since the previous crash indicator [24] (e.g., "CP
Crash") is no longer applicable to recent basebands, we an-
alyze the ADB logcat output during our testing to identify
new crash log messages. To achieve this, we enable the man-
ufacturer’s debug mode on the baseband and send test cases
until a crash occurs. We then focus on examining debug mes-
sages classified as Error or Fatal that appear immediately after
receiving malicious packets. Also, we observed that the num-
ber of log messages significantly decreases during a crash
until the baseband fully recovers. To avoid false positives,
we repeat tests and only consider log messages that appear
consistently across runs. Notably, the crash log messages vary
across basebands from different vendors. For Qualcomm, Me-
diaTek, and Samsung basebands, crashes are both indicated
by "RADIO_OFF_OR_UNAVAILABLE" or "Modem Reset"
debug messages. Interestingly, for Google Tensor basebands,
the crash log message is uniquely identified as "Everybody
panic!", distinguishing it from other vendors.

To validate crashes detected by the oracles, LLFUZZ stores
a set of recent test cases in a bug candidates. These cases are
later verified using the manufacturer’s debug mode (§5.7).

5.7 Post Analysis
To verify crashes, we manually reproduce bug candidates us-
ing manufacturer’s debug mode. On Samsung devices, we
enable this mode by dialing *#9900#, which shows a black
screen immediately when the baseband crashes. This method
is more reliable than ADB-based detection but requires man-
ual rebooting after crashes, making it unsuitable for automated
testing. During reproduction, we send test cases at a slower
pace (one every 2 seconds) to prevent overlapping causes and
eliminate false positives. If the debug mode is unavailable, we
verify crashes by sending the stored test cases multiple times
and monitoring the ADB logcat output, as described in §5.6.

Once crashes are verified, we further investigate their root
causes by analyzing the structure of the test cases. To facilitate
this analysis, we incorporate the state, channel, and configura-
tion used during testing. We also test the verified cases across
different baseband states and logical channels to thoroughly
assess the impact of each crash. Finally, we report the root
causes and impacts of the crashes to the baseband vendors.

6 Implementation

We implement LLFUZZ on top of srsENB [53], an open-
source, full-stack LTE base station. LLFUZZ is written in
C++ and consists of over 11,568 lines of code. Since the orig-
inal C/C++ packet structures in srsENB are designed to store
only legitimate data (i.e., packets with correct structures), we



developed custom structures for test cases. Specifically, we
abstracted most packet structures across the PHY, MAC, RLC,
and PDCP layers, as described in §5.4, into custom C++ struc-
tures. In addition, we developed custom mutators to modify
fields related to the headers and payloads of the targeted proto-
col layers. The mutated test cases are subsequently assembled
into packets at the byte level using a custom packet generator
and then transmitted to the target baseband. In the follow-
ing, we describe noteworthy details in the implementation of
LLFUZZ.
Flexible DCI allocation. Our test cases for the MAC layer
contain those with very small sizes (i.e., 2 bytes). However,
the default algorithm of srsENB only supports allocating ra-
dio resources in multiples of several Resource Blocks (RBs),
which are typically larger than the size of these test cases.
To address this, we develop a custom DCI allocation mecha-
nism that enables the allocation of radio resources in a more
flexible manner. In particular, LLFUZZ utilizes both Resource
Allocation Type 1 and Type 2, allowing finer-grained radio
resource allocation. It then refers to the Transport Block Size
table in the PHY layer specification [3] to select the appropri-
ate Modulation and Coding Scheme, as well as the number
of RBs based on the size of the test case. The remaining DCI
fields are left unchanged as generated by srsENB, ensuring
that the UE can correctly decode the message. This allows
LLFUZZ to support a broader range of test cases, including
those with very small sizes.
Separated ADB thread. Reading radio logcat data from the
ADB interface or sending commands to it is typically time-
consuming. This is because it may take some time for devices
to respond upon receiving commands. Such delays can block
the main thread of the eNB, which requires real-time pro-
cessing to function effectively as an LTE base station. To
address this, LLFUZZ implements a parallel thread to handle
ADB communication in the srsENB, thereby preventing per-
formance bottlenecks. This ADB thread is responsible for
managing tasks such as sending airplane mode commands to
the UE and retrieving radio logcat output to detect crashes.
Additionally, it implements a function to reboot the UE in
cases where the UE becomes permanently disconnected from
the eNB due to unforeseen issues.

7 Evaluation

To evaluate LLFUZZ, we aim to answer the following ques-
tions:
• Q1: How effective is LLFUZZ in terms of finding memory

corruption vulnerabilities on different layers and states?
(§7.2)

• Q2: How efficiently does LLFUZZ generate and test? (§7.3)
• Q3: Can LLFuzz’s approach be adapted to 5G lower layers?

(§7.4)
• Q4: How is LLFUZZ better than existing tools? (§7.5)

Figure 7: Evaluation setup.

7.1 Evaluation Setup

Figure 7 illustrates our over-the-air evaluation setup. We use
a PC equipped with an Intel i7-11700K CPU and 32GB RAM
to run the LLFUZZ framework on Ubuntu 18.04. The PC is
connected to a USRP X310 [55], which serves as the RF
frontend for transmitting and receiving signals to and from
the testing baseband. Additionally, the UE is connected to the
PC via a USB cable to enable the ADB interface. To prevent
malicious signals from interfering with other cellular devices,
we place the UE inside a shield box (i.e., Faraday cage) to
isolate it from the external environment.

7.2 Bug Discovery

We evaluated 15 cellular basebands from five vendors: Qual-
comm Snapdragon, Samsung Exynos, MediaTek, Google Ten-
sor, and Huawei Kirin. A full list of tested devices and base-
band models is available in Table 4 in the Appendix. In total,
we identified nine memory corruption vulnerabilities: five in
the MAC layer, two in the RLC layer, and two in the PDCP
layer (Table 3). Below, we discuss LLFUZZ’s effectiveness
in discovering memory corruption vulnerabilities in lower
layers. In §8, we provide a detailed analysis of the discovered
vulnerabilities.
Coverage. Using LLFUZZ, we generated a total of 121,433
test cases for the lower layers of the LTE protocol stack, in-
cluding 5,350 for PHY, 96,141 for MAC, 17,784 for RLC, and
2,158 for PDCP. These test cases cover all packet structures
identified in §5.3.
Stateful testing. LLFUZZ discovered vulnerabilities in var-
ious states of the lower layers, as summarized in Table 3.
For instance, bug B2 in the Qualcomm baseband exclusively
affects State 1, where the baseband decodes only the RAR
messages. To trigger this bug, LLFUZZ must generate test
cases adhering to the RAR structure and deliver them to the
baseband precisely while it is in State 1. If the same test cases
are sent in other states, the baseband will not crash, as it ex-
pects a different structure in those states. Another example is
bug B4, identified in the Helio P65 and G80 MediaTek base-
bands. Interestingly, this bug is limited to State 3 and does



Table 3: Discovered vulnerabilities across different vendors and protocol layers.

No. Vendor∗ Layer Description State Configuration Disclosure

B1 Qualcomm MAC
Incorrect handling of the length field in the MAC
header when a CCCH sub-header is present

S2, S3, S4 -
CVE-2025-21477
Patched

B2 Qualcomm MAC
Incorrect handling of RAR messages containing
only sub-headers without any payload

S1 -
CVE-2024-23385
Patched

B3 Qualcomm RLC
Incorrect handling of the extension part of the RLC
UM Data PDU header

S4 UM, 5-bit SN Under review

B4 MediaTek MAC
Incorrect handling of zero value in the length field
of the MAC sub-header

S3 -
CVE-2024-20076
Patched

B5 MediaTek MAC
Incorrect handling of MAC PDUs with many
MAC CE sub-headers

S2, S3, S4 -
CVE-2024-20077
Patched

B6 MediaTek MAC
Incorrect handling of continuously malformed
MAC PDUs during the attach procedure

S2, S3 -
Affects only older
firmware versions

B7 MediaTek PDCP
Incorrect handling of 5-byte PDCP Data PDUs for
the control plane

S4 -
CVE-2025-20659
Patched

B8
Tensor,
Exynos

RLC
Incorrect handling of RLC AM Data PDUs
containing many data chunks

S3, S4 AM, 11-bit LI, 10-bit SN Under review

B9 Exynos PDCP
Incorrect handling of 1-byte PDCP Data PDUs for
the user plane

S4 12-bit SN Under review

∗ A full list of tested devices and affected baseband models is available in Table 4 in the Appendix.

not affect the basebands in State 2 or State 4, despite these
states utilizing similar MAC packet structures. This behavior
suggests that the basebands may use distinct code paths to
process MAC packets in different states, further emphasizing
the importance of LLFUZZ’s stateful testing approach.

In addition, LLFUZZ uncovered several memory corrup-
tions, such as B1, B5, and B8, which are active across multiple
states. These vulnerabilities are particularly critical because
they can be exploited in multiple states, especially after the
AKA procedure, when a secure context has already been es-
tablished between the UE and the eNB. Notably, traditional
memory corruptions at layer 3 tend to be less severe in this
state due to the cryptographic protection of the data. These
findings demonstrate LLFUZZ’s effectiveness in identifying
memory corruption vulnerabilities across different sub-layers
of the LTE protocol stack. Moreover, they highlight LLFUZZ’s
scalability and robustness, as it successfully uncovered vul-
nerabilities across basebands from multiple vendors.
Support for various low-level layers. LLFUZZ was able to
identify memory corruption vulnerabilities across all sub-
layers of layer 2 (i.e., MAC, RLC, and PDCP). These re-
sults demonstrate LLFUZZ’s capability to systematically test
the lower layers and uncover bugs induced by diverse layer-
specific configurations.

Security implications. Lower layer bugs pose a significant
security threat because they remain exploitable even after
the AKA procedure. This is because these layers lack cryp-
tographic protection for headers and layer-specific control
messages (e.g., RAR grants, MAC CEs, Status PDUs). Thus,
all bugs discovered by LLFUZZ in State 4 are vulnerable to
over-the-air exploitation. For instance, an attacker can use the
SigOver [60] or MitM [50] attacks to exploit bugs such as B7
or B9 in the post-AKA state without requiring the secret key.
In addition, bugs in States 1 to 3 can be exploited using the

FBS [36] attack model. Moreover, a skilled attacker can poten-
tially escalate these exploits to achieve remote code execution
by crafting specifically tailored malicious packets [10, 23].

7.3 Performance
To evaluate the performance of LLFUZZ, we measured the
number of test cases generated and tested within a 60-second
interval. LLFUZZ can send 1–5 test cases per session (i.e.,
per Attach procedure), depending on the fuzzing state. Under
stable conditions—when the UE safely drops malformed test
cases and completes the attach procedure—LLFUZZ achieves
a throughput of up to 220 test cases per 60 seconds. In such
cases, LLFUZZ leverages signaling messages (e.g., RRC Con-
nection Release and Paging) to initiate new testing sessions
and maximize testing speed. However, this speed is signif-
icantly reduced when the baseband crashes or silently dis-
connects without crashing. In these situations, LLFUZZ must
toggle Airplane mode via ADB to recover the baseband and
re-establish the radio connection. In our evaluation, the re-
covery time after a crash varied between 10 and 15 seconds,
depending on the baseband model and crash type. We also
observed that basebands may permanently disconnect from
the framework after failing to complete the attach procedure
more than five times. In such cases, manual intervention is
required to restart both the baseband and the base station to
restore the connection.

Testing a single UE with LLFUZZ typically took between
42.5 and 58.5 hours. Exynos basebands (e.g., Galaxy S24) re-
quired approximately 58.5 hours, while MediaTek basebands
(e.g., Xiaomi K40 Gaming) took around 42.5 hours.

7.4 Adapting LLFuzz for 5G Basebands
While LLFUZZ was initially developed for LTE, its approach
can be extended to 5G basebands, which are based on the



same design principles and share similar protocol stacks and
lower-layer channel structures. As a proof of concept, we
implemented a minimal version of LLFUZZ for 5G lower
layers, referred to as LLFUZZ-5G.

LLFUZZ-5G is built on top of the srsRAN 5G project [54],
a separate codebase from srsRAN_4G [53], requiring substan-
tial adaptation effort. We ported key components of LLFUZZ
—including stateful testing, logical channel-driven design,
configuration-aware testing—and developed a grammar-
based test case generator to support the 5G PDCP layer.
Target Layers and Structures. We target the 5G PDCP
layer, which includes multiple logical channels (e.g., DCCH-
1, DCCH-2, and DTCH) and exhibits stateful behavior like
LTE (Figure 4). We generated test cases for two PDCP struc-
tures: (1) Data PDUs for SRBs with fixed configurations, and
(2) Data PDUs for DRBs configured with a 12-bit SN. Among
our test devices, we used a Xiaomi K40 Gaming that supports
connection to an open-source gNB to transmit the test cases.
Results. Using LLFUZZ-5G, we discovered two previously
unknown bugs. The first affects PDCP Data PDUs for SRBs
and, unlike LTE bug B7, only occurs in State 3, where the
DCCH-1 logical channel is used to deliver signaling mes-
sages before the AKA procedure. Interestingly, the second
bug impacts the RRC layer, as our PDCP test case also in-
cludes an embedded RRC payload. Notably, prior work such
as 5Ghoul [20] failed to uncover these issues. As these bugs
were identified and reported to the vendor recently, we cannot
disclose their details in this paper. Full details will be pro-
vided in our open-source release upon vendor confirmation.
These findings demonstrate that the LLFUZZ approach can be
effectively extended to fuzz and uncover vulnerabilities in the
5G lower layers.

7.5 Comparison with Existing Tools
We compare LLFUZZ with 5Ghoul, the only publicly available
tool that supports testing the lower layers of basebands. To
this end, we analyzed their source code and also ran 5Ghoul in
our environment to analyze their test case generation methods.
By default, 5Ghoul uses default packets from the open-source
OAI gNB as mutation seeds. It selects a packet, parses it
using the Wireshark’s packet dissector, and randomly mutates
fields across layers (e.g., MAC, RLC, PDCP, RRC, NAS). By
comparing these test cases with those generated by LLFUZZ,
we identified several limitations in 5Ghoul’s approach.
Limited layer-specific configurations. 5Ghoul tests only
the default configuration from the open-source gNB, limiting
packet structures to those in the default OAI setup. In con-
trast, LLFUZZ uses a configuration-aware approach to explore
a broader range of configurations and achieve better structural
coverage. For instance, using only the default srsENB config-
uration would fail to trigger bug B3 in LTE, requiring a 5-bit
SN in RLC UM. Moreover, LLFUZZ can actively configure
the baseband using RRC Reconfiguration messages to test
unsupported configurations (§5.5).

Limited test case diversity. As legitimate packets usually
contain only a few sub-headers, sub-payloads, and standard
lengths (e.g., more than 9-byte PDCP packets), 5Ghoul’s mu-
tation approach struggles to generate diverse test cases, par-
ticularly malformed packets with many sub-headers (> 50) or
very short lengths. This limitation explains why 5Ghoul failed
to detect our two new bugs in 5G PDCP and RRC, which re-
quire very short test cases rarely found in open-source base
stations. On the other hand, LLFUZZ leverages a specification-
guided approach to generate such test cases effectively.
Untargeted logical channel. Random field mutation in
5Ghoul may unintentionally alter essential fields, such as
LCID or RLC SN, leading to test cases that are not correctly
routed to the target logical channel. For example, when an-
alyzing the first 500 test cases generated by 5Ghoul using
Wireshark, we observed that more than 50% had incorrect
LCIDs. These test cases were likely rejected by the base-
band before reaching the RLC layer. The rejection rate could
be even higher due to incorrect RLC headers. In contrast,
LLFUZZ adopts a logical channel-driven and specification-
guided approach to generate test cases tailored to specific
logical channels, ensuring they are correctly routed to the
target channel.

8 Case Study

In this section, we discuss two out of nine bugs discovered by
LLFUZZ. Due to space constraints, additional case studies are
provided in Appendix C.
B2: Incorrect handling of RAR messages containing all
sub-headers without any payload. We identified a vulner-
ability that affects several Qualcomm basebands in State 1.
According to the MAC specification [4], RAR messages can
contain multiple sub-headers, each with a Random Access
Preamble Identifier (RAPID) field to identify the intended UE.
To trigger the bug, we crafted a malformed RAR message
with 57 sub-headers, placing the RAPID matching the target
UE in the final sub-header while using different RAPIDs for
all others. Further analysis revealed that the crash occurs only
when the matching RAPID sub-header is at the end of the mes-
sage. We reported this issue to Qualcomm, which assigned
CVE-2024-23385 with a high severity rating.
B3: Incorrect handling of the extension part of the RLC
UM Data PDU header with 5-bit Sequence Number. We
identified a vulnerability in several Qualcomm basebands re-
lated to the extension part of the RLC UM Data PDU. Accord-
ing to the specification, these packets can contain multiple
data chunks indicated by [E, LI] field pairs in the header exten-
sion. For example, a PDU with three data chunks would have
two [E, LI] pairs, as the last chunk’s size is determined by the
remaining bytes. To exploit this bug, we created a malformed
2-byte packet with a 1-byte header and 1-byte extension part,
setting the E field to 1 (indicating another [E, LI] pair should
follow) despite having no space for it. The likely root cause



of this bug is insufficient validation of the extension part’s
length before parsing. This issue occurs only when the RLC
UM Data PDU is configured with a 5-bit Sequence Number
and an 11-bit Length Indicator in State 4.

9 Discussion and Limitations

Supporting 5G protocol. LLFUZZ primarily targets LTE due
to its long-term presence in smartphone basebands—similar
to 2G, which remains widely supported in modern devices
(many studies continue to exploit 2G vulnerabilities). How-
ever, we believe that the techniques and approaches employed
in LLFUZZ can be adapted to 5G protocols, as the 5G lower
layers share a similar design with LTE. As a proof of concept,
we developed a minimal version of LLFUZZ that supports two
structures in the 5G PDCP layer, through which we uncovered
two previously unknown bugs (§7.4).

Despite this success, we encountered several practical chal-
lenges during our 5G development. First, most of our 5G
devices failed to connect to the open-source gNBs. For these
devices, the UEs did not even initiate the Random Access
Procedure, making further debugging impossible. We exper-
imented with different bands, bandwidths, and MNC/MCC
settings, but all attempts failed. A few devices (e.g., Xiaomi
K40 Gaming, Google Pixel 8 Pro) were able to connect us-
ing manual NR forcing (e.g., enabling NR-only mode via
*#*#4636*#*#). Second, automatic testing posed additional
challenges. For instance, when testing the Xiaomi K40 Gam-
ing, we observed that the device automatically reset its con-
nection mode to 3G/LTE/NR after crashing. As a result, we
had to manually reconfigure the device to NR-only mode af-
ter each crash, significantly slowing down the testing process.
Third, the 5G lower layers are inherently more complex than
LTE. For example, the 5G MAC layer includes over 20 MAC
CEs with complicated structures. This added complexity re-
quires substantial effort to fully support 5G protocols.
Fuzzing DCI messages. Although this work did not iden-
tify memory corruptions in DCI, such vulnerabilities could
arise if DCI messages are improperly handled. The PHY
layer must translate DCI contents into uplink/downlink grants
and control information (e.g., TPC), using indices to retrieve
values from predefined tables. Programming errors in this
process—especially when handling reserved or abnormal val-
ues—could result in memory corruption. For instance, LTE
DCI format 2 includes a 3-bit field for precoding information,
which determines the precoding matrix. However, the value 7
in this field is reserved for future use; incorrect access to this
value might lead to memory corruption. Given the potential
for such vulnerabilities, LLFUZZ supports fuzzing six DCI for-
mats (Table 2). While the specification defines additional DCI
formats, we focused only on those supported by the srsENB.
Several unsupported formats are specific to NB-IoT, which is
outside the scope of this work. Moreover, testing many DCI
formats requires a more complex setup, such as synchronized

base stations and MIMO antennas. We leave the exploration
of these DCI structures for future work.
Vendor-specific behaviors. Basebands from the same ven-
dor typically exhibit similar behaviors during our tests. As a
result, vulnerabilities discovered on one device often affect
other devices from the same vendor (Table 4). However, we
observed notable differences between Exynos and Google
basebands, even though the latter is reportedly based on the
Exynos. For example, while both bugs B8 and B9 were found
in the Exynos modem, only B8 affected the Google Pixel 6a.
Limitations. First, like other over-the-air fuzzing tools,
LLFUZZ cannot identify the root cause of crashes at the mem-
ory level. For instance, it cannot determine whether a crash is
caused by a buffer overflow or other types of memory access
errors. Emulation-based approaches, such as FirmWire [24]
or BaseSAFE [39], can be more helpful in terms of this. How-
ever, LLFUZZ excels in rapidly detecting crashes and is univer-
sally applicable to any baseband device, regardless of vendor
or implementation. Second, LLFUZZ detects only memory
corruptions that lead to a baseband crash or reset. Silent cor-
ruptions, which do not trigger a crash but may still be ex-
ploitable [40], are beyond its detection capability. In such
cases, LLFUZZ may be more useful to vendors with access
to the baseband source code for further analysis. Third, as
LLFUZZ employs an ADB-based oracle to detect crashes and
recover basebands, its support for iPhones is limited. How-
ever, since recent iPhone models are also equipped with Qual-
comm basebands, we believe that some vulnerabilities discov-
ered in Android devices can often be applicable to iPhones.
For instance, we confirmed that the bug B1 discovered on
a Samsung Galaxy Note 20 Ultra was also reproducible on
an iPhone 13 Pro. We reported this result to Apple; they
confirmed the issue and assigned CVE-2024-27874.

10 Related Work
Reverse engineering on basebands. Because the baseband
operates as a black box, reverse engineering has been exten-
sively applied to analyze baseband binaries [12, 13, 21, 22,
23, 29, 30, 33, 57, 58]. Basespec [30] used static analysis and
symbolic execution to examine layer 3 decoding functions
and compared the results against specifications to identify
non-compliance. While reverse engineering is effective at de-
tecting memory corruption vulnerabilities, it is labor-intensive
and not scalable for multiple basebands.
Emulation-based approach for memory corruptions. To
address the limitations of reverse engineering, another line
of research proposed using emulation to dynamically ana-
lyze baseband firmware [24, 32, 39, 48]. FirmWire [24] suc-
cessfully emulated Shannon and MediaTek basebands and
leveraged the open-source fuzzer AFL++[18] to test layer 3
protocol functions. Building on FirmWire, Goos et al. [15]
extended its capabilities to emulate layer 2 protocols on GSM
basebands. Very recently, LORIS [48] and BaseBridge [32]
enabled emulation-based stateful fuzzing for Samsung and



MediaTek basebands. Although effective at identifying root
causes of memory corruption, prior work focused on layer 3
and GSM protocols. In contrast, LLFUZZ targets layers 1 and
2 of the LTE stack, which are significantly harder to emulate
due to their protocol complexity.
Over-the-air fuzzing for memory corruptions. Over-the-air
fuzzing has emerged as an effective approach for discover-
ing memory corruptions in cellular basebands [19, 20, 41,
46, 47, 56]. Most of these works, however, have focused on
layer 3 protocols within the GSM protocol stack. Only a few
efforts have targeted layer 2. Pestrea et al. [46] fuzzed the
MAC layer of LTE base stations by generating a few test
cases through combinations of MAC sub-header fields. More
recently, 5Ghoul [19, 20, 52] targeted both layers 3 and 2 of
the 5G protocol, but relied on random field mutations of legiti-
mate messages generated by an open-source gNB. In contrast,
LLFUZZ adopts a more systematic and efficient approach, uti-
lizing a specification-guided method to generate test cases.
Its novel channel-driven, configuration-aware testing frame-
work is tailored specifically for the lower layers, allowing
systematic testing of diverse packet structures in multiple
channels. Apart from cellular basebands, several previous
works attempted to fuzz layer 2 of Bluetooth devices [8, 44].
While both target lower layers, LLFUZZ addresses the unique
challenges of the LTE protocol, including multiple logical
channels and dynamically configurable packet structures.
Finding standard non-compliance bugs. Several studies
have focused on identifying specification non-compliance
bugs in cellular networks [11, 14, 28, 31, 43, 49]. Rupprecht
et al. [49] proposed a framework to test encryption and authen-
tication algorithms on the UE side. DoLTEst [43] introduced
a negative testing approach to uncover non-compliance bugs
in LTE basebands. Contester [14] leveraged natural language
processing and machine learning to automatically generate
conformant test cases for NAS protocol.
Testing other network components. Researchers have ex-
plored other cellular network components: RANsacked [9]
targets RAN-Core interfaces, BaseMirror [35] focuses on An-
droid’s Radio Interface Layer, and Patir et al. [45] used LLMs
to find bugs in open-source UEs—all distinct from our focus
on closed-source commercial baseband components.
Attacks on lower layers. The absence of security mecha-
nisms in lower layers has enabled various attacks, including
overshadowing [16, 37, 60], user localization [34, 42], pas-
sive eavesdropping [17, 25, 38], and fake base stations [36].
LLFUZZ reinforces the need for lower-layer protection by
revealing multiple memory corruption vulnerabilities.

11 Conclusion

In this work, we introduced LLFUZZ, an over-the-air testing
framework designed to uncover memory corruption in the
lower layers of cellular basebands. LLFUZZ employs a logical
channel-driven, configuration-aware testing approach to sys-

tematically explore the lower layers of basebands. Through
specification-guided test case generation, LLFUZZ created tai-
lored test cases for a wide range of packet structures across the
PHY, MAC, RLC, and PDCP layers. We evaluated LLFUZZ on
15 commercial basebands from five major vendors, uncover-
ing nine previously unknown memory corruptions. These find-
ings highlight the critical importance of testing and securing
the lower layers of cellular basebands, which are frequently
underexamined yet essential for ensuring the reliability and
security of mobile communication systems.

Acknowledgments

We sincerely appreciate reviewers and shepherd for their valu-
able comments. This work was supported by the Institute of
Information & Communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(No.RS-2024-00437252, Development of anti-sniffing tech-
nology in mobile communication and AirGap environments).

Ethical Considerations

Responsible Disclosure. We responsibly disclosed all our
findings to the baseband vendors, providing detailed reports
and engaging in discussions to assist their investigations. As
a result, the status of disclosed vulnerabilities is as follows:

• Bugs B1 and B2 have already been patched by Qual-
comm, and bugs B4, B5, and B7 have already been
patched by MediaTek.

• Bug B6 affects only older baseband firmware versions
and had already been patched in the latest firmware.

• Bugs B8, and B9 have been successfully verified, and
vendors are working on releasing patches.

• Bug B3 is still under review, and we are actively assisting
the vendor in reproducing it.

We continue to work closely with the vendors to ensure these
issues are fully addressed.
Controlled Experiment. We conducted our experiment in a
isolated environment (i.e. Faraday cage) to prevent malicious
signals from affecting other cellular devices. Also, we oper-
ate our base station in a frequency band that is not used by
commercial cellular networks. This setup ensures that our ex-
periment does not violate any local regulations in our country.

Open Science

As outlined in §1, upon acceptance of this paper, we will
make the source code of LLFUZZ publicly available at
https://github.com/SysSec-KAIST/LLFuzz. In addition, the
source code will be archived in the artifact repository at
https://doi.org/10.5281/zenodo.15602679. We hope that
our framework will foster further research in this domain.

https://github.com/SysSec-KAIST/LLFuzz
https://doi.org/10.5281/zenodo.15602679


References

[1] libFuzzer – A Library for Coverage-guided Fuzz Testing.
https://llvm.org/docs/LibFuzzer.html.

[2] 3GPP. TS 36.212, v16.2.0. LTE; Evolved Universal
Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding., 2020.

[3] 3GPP. TS 36.213, v16.2.0. LTE; Evolved Universal
Terrestrial Radio Access (E-UTRA); Physical layer pro-
cedures., 2020.

[4] 3GPP. TS 36.321, v16.1.0. Evolved Universal Terres-
trial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol specification., 2020.

[5] 3GPP. TS 36.322, v16.0.0. Evolved Universal Terrestrial
Radio Access (E-UTRA); Radio Link Control (RLC)
protocol specification., 2020.

[6] 3GPP. TS 36.323, v16.1.0. Evolved Universal Terrestrial
Radio Access (E-UTRA); Packet Data Convergence
Protocol (PDCP) specification., 2020.

[7] 3GPP. TS 36.331, v16.1.1. LTE; Evolved Universal
Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification., 2020.

[8] Pyeongju Ahn, Yeonseok Jang, Seunghoon Woo, and
Heejo Lee. BloomFuzz: Unveiling Bluetooth L2CAP
Vulnerabilities via State Cluster Fuzzing with Target-
Oriented State Machines. In European Symposium on
Research in Computer Security, 2024.

[9] Nathaniel Bennett, Weidong Zhu, Benjamin Simon,
Ryon Kennedy, William Enck, Patrick Traynor, and
Kevin RB Butler. RANsacked: A Domain-Informed
Approach for Fuzzing LTE and 5G RAN-Core Inter-
faces. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security,
2024.

[10] David BERARD and Vincent DEHORS. Zero-Click
RCE on the Tesla Infotainment Through Cellular Net-
work. OffensiveCon, 2024.

[11] Evangelos Bitsikas, Syed Khandker, Ahmad Salous,
Aanjhan Ranganathan, Roger Piqueras Jover, and
Christina Pöpper. UE Security Reloaded: Developing a
5G Standalone User-Side Security Testing Framework.
In Proceedings of the 16th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2023.

[12] Amat Cama. ASN.1 and Done: A Journey of Exploiting
ASN.1 Parsers in the Baseband. OffensiveCon, 2023.

[13] Amat Cama. A walk with Shannon. OPCDE, 2018.

[14] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, Xi-
aoFeng Wang, Xiaozhong Liu, Haixu Tang, and Baoxu
Liu. Sherlock on Specs: Building LTE Conformance
Tests through Automated Reasoning. In Proceedings of
the 32nd USENIX Security Symposium, 2023.

[15] Goos Dyon and Muench Marius. Overcoming State:
Finding Baseband Vulnerabilities by Fuzzing Layer-2.
BlackHat, 2024.

[16] Simon Erni, Martin Kotuliak, Patrick Leu, Marc
Roeschlin, and Srdjan Capkun. AdaptOver: Adaptive
Overshadowing Attacks in Cellular Networks. In Pro-
ceedings of the 28th Annual International Conference
on Mobile Computing And Networking, 2022.

[17] Robert Falkenberg and Christian Wietfeld. FALCON:
An Accurate Real-Time Monitor for Client-Based Mo-
bile Network Data Analytics. In IEEE Global Commu-
nications Conference, 2019.

[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++ : Combining Incremental Steps of
Fuzzing Research. In the 14th USENIX Workshop on
Offensive Technologies, 2020.

[19] Matheus E Garbelini, Zewen Shang, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. Towards Au-
tomated Fuzzing of 4G/5G Protocol Implementations
Over the Air. In IEEE Global Communications Confer-
ence, 2022.

[20] Matheus E Garbelini, Zewen Shang, Shijie Luo,
Sudipta Chattopadhyay, Sumei Sun, and Ernest Kur-
niawan. 5GHOUL: Unleashing Chaos on 5G
Edge Devices. https://asset-group.github.io/
disclosures/5ghoul/.

[21] Nico Golde and Daniel Komaromy. Breaking Band:
Reverse Engineering and Exploiting the Shannon Base-
band. REcon, 2016.

[22] Marco Grassi and Xingyu Chen. Exploring the Medi-
aTek Baseband. OffensiveCon, 2020.

[23] Marco Grassi, Muqing Liu, and Tianyi Xie. Exploitation
of a Modern Smartphone Baseband. BlackHat, 2018.

[24] Grant Hernandez, Marius Muench, Dominik Maier,
Alyssa Milburn, Shinjo Park, Tobias Scharnowski, Tyler
Tucker, Patrick Traynor, and Kevin Butler. FIRMWIRE:
Transparent Dynamic Analysis for Cellular Baseband
Firmware. In Proceedings of the Annual Network and
Distributed Systems Security Symposium, 2022.

[25] Dinh Tuan Hoang, CheolJun Park, Mincheol Son,
Taekkyung Oh, Sangwook Bae, Junho Ahn, BeomSeok
Oh, and Yongdae Kim. LTESniffer: An Open-source

https://llvm.org/docs/LibFuzzer.html
https://asset-group.github.io/disclosures/5ghoul/
https://asset-group.github.io/disclosures/5ghoul/


LTE Downlink/Uplink Eavesdropper. In Proceedings of
the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2023.

[26] Byeongdo Hong, Shinjo Park, Hongil Kim, Dongkwan
Kim, Hyunwook Hong, Hyunwoo Choi, Jean-Pierre
Seifert, Sung-Ju Lee, and Yongdae Kim. Peeking Over
the Cellular Walled Gardens - A Method for Closed
Network Diagnosis. In IEEE Transactions on Mobile
Computing, 2018.

[27] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowd-
hury, Ninghui Li, and Elisa Bertino. Privacy Attacks
to the 4G and 5G Cellular Paging Protocols using Side
Channel Information. In Proceedings of the Annual
Network and Distributed Systems Security Symposium,
2019.

[28] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq,
Omar Chowdhury, and Elisa Bertino. Noncompliance
as Deviant Behavior: An Automated Black-box Non-
compliance Checker for 4G LTE Cellular Devices. In
Proceedings of the 28th ACM Conference on Computer
and Communications Security, 2021.

[29] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongk-
wan Kim, Yongdae Kim, and Insu Yun. BASECOMP:
A Comparative Analysis for Integrity Protection in Cel-
lular Baseband Software. In Proceedings of the 32nd
USENIX Security Symposium, 2023.

[30] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun,
and Yongdae Kim. BASESPEC: Comparative Analysis
of Baseband Software and Cellular Specifications for
L3 Protocols. In Proceedings of the Annual Network
and Distributed Systems Security Symposium, 2021.

[31] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim.
Touching the Untouchables: Dynamic Security Analy-
sis of the LTE Control Plane. In IEEE Symposium on
Security and Privacy, 2019.

[32] Daniel Klischies, Dyon Goos, David Hirsch, Alyssa Mil-
burn, Marius Muench, and Veelasha Moonsamy. Base-
Bridge: Bridging the Gap between Emulation and Over-
The-Air Testing for Cellular Baseband Firmware. In
IEEE Symposium on Security and Privacy, 2025.

[33] Daniel Komaromy. Basebanheimer: Now I Am Become
Death, The Destroyer Of Chains. OffensiveCon, 2023.

[34] Martin Kotuliak, Simon Erni, Patrick Leu, Marc
Röschlin, and Srdjan Čapkun. LTrack: Stealthy Track-
ing of Mobile Phones in LTE. In Proceedings of the
31st USENIX Security Symposium, 2022.

[35] Wenqiang Li, Haohuang Wen, and Zhiqiang Lin.
BaseMirror: Automatic Reverse Engineering of Base-
band Commands from Android’s Radio Interface Layer.
In Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, 2024.

[36] Zhenhua Li, Weiwei Wang, Christo Wilson, Jian Chen,
Chen Qian, Taeho Jung, Lan Zhang, Kebin Liu, Xi-
angyang Li, and Yunhao Liu. FBS-Radar: Uncovering
Fake Base Stations at Scale in the Wild. In Proceedings
of the Annual Network and Distributed Systems Security
Symposium, 2017.

[37] Norbert Ludant and Guevara Noubir. SigUnder: A
Stealthy 5G Low Power Attack and Defenses. In Pro-
ceedings of the 14th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2021.

[38] Norbert Ludant, Pieter Robyns, and Guevara Noubir.
From 5G Sniffing to Harvesting Leakages of Privacy-
preserving Messengers. In IEEE Symposium on Security
and Privacy, 2023.

[39] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband Sanitized Fuzzing through Emula-
tion. In Proceedings of the 13th Conference on Security
and Privacy in Wireless and Mobile Networks, 2020.

[40] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What You Corrupt Is
Not What You Crash: Challenges in Fuzzing Embedded
Devices. In Proceedings of the Annual Network and
Distributed Systems Security Symposium, 2018.

[41] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert.
SMS of Death: From Analyzing to Attacking Mobile
Phones on a Large Scale. In Proceedings of the 20th
USENIX Security Symposium, 2011.

[42] Taekkyung Oh, Sangwook Bae, Junho Ahn, Yonghwa
Lee, Tuan Dinh Hoang, Min Suk Kang, Nils Ole Tippen-
hauer, and Yongdae Kim. Enabling Physical Localiza-
tion of Uncooperative Cellular Devices. In Proceedings
of the 30th Annual International Conference on Mobile
Computing and Networking, 2024.

[43] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee,
Eunkyu Lee, Insu Yun, and Yongdae Kim. DoLTEst: In-
depth Downlink Negative Testing Framework for LTE
Devices. In Proceedings of the 31st USENIX Security
Symposium, 2022.

[44] Haram Park, Carlos Kayembe Nkuba, Seunghoon Woo,
and Heejo Lee. L2Fuzz: Discovering Bluetooth L2CAP
vulnerabilities using stateful fuzz testing. In Proceed-
ings of the 52nd International Conference on Depend-
able Systems and Networks, 2022.



[45] Rupam Patir, Qiqing Huang, Keyan Guo, Wanda Guo,
Guofei Gu, Haipeng Cai, and Hongxin Hu. Towards
LLM-Assisted Vulnerability Detection and Repair for
Open-Source 5G UE Implementations. In Proceedings
of the Annual Network and Distributed Systems Security
Symposium, 2025.

[46] Anna Pestrea. Fuzz Testing on eNodeB Over the Air
Interface: Using Fuzz Testing as a Means of Testing
Security, 2021.

[47] Srinath Potnuru and Prajwol Kumar Nakarmi. Berserker:
ASN.1-based Fuzzing of Radio Resource Control Pro-
tocol for 4G and 5G. In 17th International Conference
on Wireless and Mobile Computing, Networking and
Communications, 2021.

[48] Ali Ranjbar, Tianchang Yang, Kai Tu, Saaman Khalilol-
lahi, and Syed Rafiul Hussain. Stateful Analysis and
Fuzzing of Commercial Baseband Firmware. In IEEE
Symposium on Security and Privacy, 2025.

[49] David Rupprecht, Kai Jansen, and Christina Pöpper.
Putting LTE Security Functions to the Test: A Frame-
work to Evaluate Implementation Correctness. In the
10th USENIX Workshop on Offensive Technologies,
2016.

[50] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking LTE on Layer Two. In IEEE
Symposium on Security and Privacy, 2019.

[51] Jaeku Ryu. LTE Downlink Channel Mapping.
ShareTechnote.

[52] Zewen Shang, Matheus E Garbelini, and Sudipta Chat-
topadhyay. U-Fuzz: Stateful Fuzzing of IoT Protocols
on COTS Devices. In IEEE Conference on Software
Testing, Verification and Validation, 2024.

[53] Software Radio Systems. srsRAN_4G.
https://github.com/srsran/srsRAN_4G.

[54] Software Radio Systems. srsRAN_Project.
https://github.com/srsran/srsRAN_Project.

[55] USRP X310. https://www.ettus.com/x310-kit/.

[56] Hongxin Wang, Baojiang Cui, Wenchuan Yang, Jia Cui,
Li Su, and Lingling Sun. An Automated Vulnerability
Detection Method for the 5G RRC Protocol Based on
Fuzzing. In 4th International Conference on Advances
in Computer Technology, Information Science and Com-
munications, 2022.

[57] Ralf-Philipp Weinmann. All Your Baseband Are Belong
to Us. Hack.lu, 2010.

[58] Ralf-Philipp Weinmann. Baseband Attacks: Remote
Exploitation of Memory Corruptions in Cellular Proto-
col Stacks. In the 6th USENIX Workshop on Offensive
Technologies, 2012.

[59] Accuver XCAL. http://www.accuver.com/.

[60] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil
Kim, Song Min Kim, and Yongdae Kim. Hiding in Plain
Signal: Physical Signal Overshadowing Attack on LTE.
In Proceedings of the 28th USENIX Security Symposium,
2019.

[61] Google Project Zero. Multiple Internet
to Baseband Remote Code Execution Vul-
nerabilities in Exynos Modems. https:
//googleprojectzero.blogspot.com/2023/
03/multiple-internet-to-baseband-remote-
rce.html.

A Acronyms
AKA Authentication and Key Agreement
AM Acknowledged Mode
BCCH Broadcast Control Channel
CCCH Common Control Channel
CE Control Element
DCI Downlink Control Indicator
DCCH Dedicated Control Channel
DRB Data Radio Bearer
DTCH Dedicated Traffic Channel
eNB Evolved Node B (Base Station)
FDD Frequency Division Duplex
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
HARQ Hybrid Automatic Repeat Request
IMEI International Mobile Equipment Identity
LCID Logical Channel ID
LI Length Indicator
MAC Medium Access Control
NAS Non-Access Stratum
PCCH Paging Control Channel
PDU Protocol Data Unit
PDCP Packet Data Convergence Protocol
PHY Physical Layer
RAR Random Access Response
RLC Radio Link Control
RNTI Radio Network Temporary Identifier
ROHC Robust Header Compression
RRC Radio Resource Control
SDU Service Data Unit
SN Sequence Number
SRB Signaling Radio Bearer
TM Transparent Mode
UE User Equipment
UM Unacknowledged Mode

https://github.com/srsran/srsRAN_4G
https://github.com/srsran/srsRAN_Project
https://www.ettus.com/x310-kit/
http://www.accuver.com/
https://googleprojectzero.blogspot.com/2023/03/multiple-internet-to-baseband-remote-rce.html
https://googleprojectzero.blogspot.com/2023/03/multiple-internet-to-baseband-remote-rce.html
https://googleprojectzero.blogspot.com/2023/03/multiple-internet-to-baseband-remote-rce.html
https://googleprojectzero.blogspot.com/2023/03/multiple-internet-to-baseband-remote-rce.html


B Tested Devices

The list of tested devices and their baseband versions is pro-
vided in Table 4.

C More Case Studies

C.1 B1: Incorrect Handling of the Length
Field in the MAC Sub-Header

This vulnerability occurs when the baseband receives a mal-
formed MAC DL-SCH PDU with a CCCH sub-header whose
Length field exceeds the actual payload size. To trigger this
bug, we crafted a MAC PDU with three sub-headers: LCID
11100 (Contention Resolution CE), LCID 00000 (CCCH)
with the L field set to 127, and LCID 11111 (padding). The
payload contained only 6 bytes for the Contention Resolution
CE and 2 bytes for CCCH—far less than the 127 bytes in-
dicated by the CCCH sub-header. This vulnerability occurs
only if the CCCH sub-header is present, and it affects multiple
Qualcomm basebands in States 2–4.

C.2 B5: Incorrect Handling of MAC PDUs
with Many MAC CE Sub-headers

The modem crashed after receiving a malformed MAC DL-
SCH PDU with 50 sub-headers for MAC CEs and an invalid
payload length. For the sub-headers, we set the LCID fields
to 11100 (Contention Resolution), which has a fixed length
of 6 bytes. However, the payload consisted of only 7 bytes of
random data, far below the required 300 bytes for 50 MAC
CEs. The reason for this crash appears to be the baseband
failed to validate the actual payload length (7 bytes), resulting
in a crash. Further analysis revealed that the baseband also
crashes when other MAC CE LCIDs, such as 11011 (Acti-
vation/Deactivation), 11101 (Timing Advance), and 11110
(DRX Command), are used in the same manner. This vulnera-
bility affects multiple MediaTek basebands in states 2–4. We
reported the issue to MediaTek, which assigned it CVE-2024-
20077 with a high severity rating.

C.3 B6: Incorrect Handling of Continuously
Malformed MAC PDUs During the Attach
Procedure

During our fuzzing tests, we observed an interesting behavior
in several MediaTek basebands. When the baseband receives
a malformed MAC DL-SCH PDU (i.e., a PDU where the
sub-payload length is less than the L field in the sub-header)
during States 2 or 3 of the Attach procedure, it immediately
terminates the current procedure and initiates a new one. In
the new Attach procedure, the baseband exhibits the same
behavior: it repeatedly terminates and initiates a new Attach
procedure if the same malformed test case is sent. We found
that continuously sending malformed MAC PDUs to force
the baseband to trigger new Attach procedures 4–6 times

eventually causes a crash. We reported this vulnerability to
MediaTek, but it only affects older baseband firmware ver-
sions and had already been fixed in recent releases.

C.4 B7: Incorrect Handling of 5-byte PDCP
Data PDUs for the Control Plane

We discovered a vulnerability in which basebands crash upon
receiving PDCP Data PDUs that are shorter than expected.
According to the PDCP specification [6], control plane Data
PDUs must be at least 6 bytes long: a 1-byte header, a non-
empty data field, and 4 bytes for integrity protection. By send-
ing a malformed 5-byte PDU, we triggered crashes due to
insufficient length validation, resulting in a buffer overread.
Notably, PDUs shorter than 5 bytes (e.g., 3 or 4 bytes) do not
cause crashes. This vulnerability is specific to State 4 and
does not affect State 3, despite both states using the same
PDU structure for SRB1 and SRB2.

C.5 B8: Incorrect Handling of RLC AM Data
PDUs Containing Many Data Chunks

We found several Samsung Exynos and Google Tensor base-
bands crash when receiving RLC AM PDUs with many data
chunks. According to specifications, this RLC PDU can con-
tain multiple data chunks described by [E, LI] field pairs. To
trigger the vulnerability, we crafted a malformed PDU with
100 data chunks (each 10 bytes), encapsulated it into a MAC
PDU with appropriate LCID (e.g., 00001), and sent it to the
DCCH channels. Upon receiving this malformed RLC PDU,
basebands crash immediately and lose connection with the
network. The root cause appears to be a buffer overflow that
occurs when the baseband attempts to parse an excessive
number of [E, LI] pairs.

C.6 B9: Incorrect Handling of 1-byte PDCP
Data PDUs for the User Plane

We tested the Galaxy S24 and found that its baseband crashes
when receiving a malformed PDCP Data PDU containing
just 1 byte. Unlike bug B7 that affects the control plane,
this vulnerability impacts the user plane Data PDU structure.
The crash likely results from a buffer overread, as user plane
Data PDUs require at least 2 bytes for the header. This issue
only occurs when the PDCP layer is configured with a 12-bit
Sequence Number in State 4.

D Detailed Test Case Generation.

D.1 MAC Layer
Step 1 : Generate initial MAC packets. LLFUZZ begins
by selecting either the DL-SCH or RAR structure to gener-
ate seed packets. Since both support multiple sub-headers
and sub-payloads, it creates packets with varying numbers
of these components (e.g., 1, 3, or 50+). For example, Fig-
ure 8 shows a DL-SCH packet with 3 sub-headers. To do



Table 4: Tested devices.

Vendor No. Smartphone Baseband Model Firmware Ver. PHY MAC RLC PDCP

Qualcomm

1 SS∗ Galaxy Note 20 Ultra Snapdragon 865+ N986NKSU2HWH5 - B1, B2 B3 -
2 SS Galaxy S20 Snapdragon 865 G981NKSU3IWH5 - B1, B2 B3 -
3 SS Galaxy S22 Plus Snapdragon 8 Gen 1 S906NKSU2BVJA - B2 B3 -
4 SS Galaxy S24 Ultra Snapdragon 8 Gen 3 S928NKSU2AXE4 - - B3 -
5 OnePlus 9 Pro Snapdragon 888 Q_V1_P14 - B1, B2 B3 -

MediaTek

6 SS Galaxy A31 Helio P65 A315NKOU1DVH1 - B4, B5, B6 - -
7 SS Galaxy A32 Helio G80 A325NKOU4DWH3 - B4, B5, B6 - -
8 Xiaomi K40 Gaming Dimensity 1200 MOLY.NR15.R3.TC8.PR2.SP.V1.P51 - - - B7
9 Xiaomi Redmi Note 9T Dimensity 800U MOLY.NR15.R3.TC8.PR1.SP.V1.1.P106 - - - B7

SS∗ Exynos
10 SS Galaxy S21 Exynos 2100 G991NKOU4EWE2 - - - -
11 SS Galaxy S24 Exynos 2400 S921NKSU2AXE4 - - B8 B9
12 SS Galaxy S10e Exynos 9820 N970NKOU1ASE5 - - - -

GG† Tensor
13 Pixel 6a Google Tensor AP1A.240305.019.A1 - - B8 -
14 Pixel 8 Pro Google Tensor G3 AP2A.240905.003 - - - -

Huawei 15 Huawei P30 Pro Kirin 980 21C20B379S000C000 - - - -
∗ Samsung.
† Google.

F2 E LCIDR

F2 E LCIDR

F L

L

F2 E LCIDR

R Timing Advance CommandR

…

…

Sub-header 1

Sub-header 2

Sub-header 3

MAC CE

Sub-payload 2

Sub-payload 3

Figure 8: MAC test case generation steps. The numbers correspond
to the steps in the generation process.

so, LLFUZZ decides the sub-header format based on fields
such as F, F2 (DL-SCH), and T (RAR). Structural fields (F,
F2, T, E) are fixed after this step, while others are assigned
temporary legitimate values for later mutation.
Step 2 : Mutate LCID fields. In the case of the DL-SCH
structure, LLFUZZ subsequently mutates the LCID fields in
the sub-headers. LLFUZZ combines varying LCID values, as
they serve as identifiers for logical channels, which may have
different priorities in baseband processing. Importantly, the
LCID value for each sub-header is constrained by its format.
For instance, sub-header format A (F2 = 0, F = 0, E = 1)
cannot contain LCID values reserved for MAC CEs. Using
inappropriate LCID values could inadvertently alter the sub-
header format, disrupting the intended structure.
Step 3 : Packet truncation. LLFUZZ truncates the generated
MAC packets to create various combinations of sub-headers
and sub-payloads. For instance, the MAC DL-SCH packet in
Figure 8 can be truncated to create packets with: (i) only 3
sub-headers without sub-payloads, (ii) 3 sub-headers and 2

sub-payloads, (iii) 3 sub-headers and 1 sub-payload, or (iv)
normal packets with 3 sub-headers and 3 sub-payloads. This
step is essential for generating malformed test cases that can
potentially trigger memory bugs in the basebands.
Step 4 : Header mutation. In this step, LLFUZZ mutates the
values of the remaining fields (e.g., RAPID, BI, and R in RAR
sub-headers, and L and R in DL-SCH sub-headers). LLFUZZ
iterates through these fields and mutates them based on their
bit lengths. LLFUZZ does not mutate all possible values, as
this would result in an excessive number of test cases. Instead,
it focuses on boundary values and a few representative le-
gitimate values. For example, for the 7-bit L field, LLFUZZ
mutates this field to 0 and 27 −1.
Step 5 : Payload mutation. Finally, LLFUZZ mutates the
fields in the sub-payloads. For the MAC DL-SCH structure,
it only mutates the sub-payloads corresponding to MAC CEs.
For the RAR sub-payloads, LLFUZZ mutates the fields re-
lated to RAR grants, such as Timing Advance Command,
UL Grant, R, and Temporary C-RNTI. All mutations are
specification-guided to ensure values remain within valid
ranges and do not corrupt adjacent fields.

D.2 RLC Layer

Step 1 : Generate initial RLC packets. LLFUZZ selects a
specific RLC structure from the specification and generates
valid RLC packets. Since many RLC formats can include
multiple data chunks, LLFUZZ creates packets with varying
numbers of chunks (e.g., 0, 3, or more than 50). At the end of
this step, certain fields in the fixed header (e.g., D/C, E) are set
and not mutated further, as they define the overall structure of
the packet.



Step 2 : Packet truncation. LLFUZZ creates both valid and
malformed test cases by truncating the generated RLC packets.
When multiple data chunks are present, it generates variants
with different numbers of chunks (e.g., 3, 2, 1, or 0). LLFUZZ
also truncates the fixed header or extension part to produce
very short packets, such as those with only 1 or 2 bytes. This
approach enables the generation of diverse test cases, includ-
ing those rarely seen in normal communication.
Step 3 : Header mutation. After structural fields are fixed,
LLFUZZ mutates the remaining fields, such as Frame Informa-
tion (FI), Resegmentation Flag (RF), Sequence Number (SN),
and Length Indicator (LI). For fields with short lengths (i.e.,
fewer than 3 bits), LLFUZZ exhaustively mutates all possible
values. For longer fields, it focuses on boundary values and
representative valid values. For example, for the 11-bit LI
field, LLFUZZ mutates it to 0 and 211 −1.
Step 4 : Mapping to logical channel. Once an RLC test
case is generated, it must be delivered to the correct logical
channel. LLFUZZ wraps the test case in a MAC container with
an appropriate sub-header, specifying the Logical Channel
ID (LCID) and Length (L) fields. For example, a 10-byte test
case for the DCCH channel is assigned LCID = 00001 and L
= 10, ensuring the baseband correctly routes and processes
the packet.

D.3 PDCP Layer

Step 1 : Generate initial PDCP packets. Similar to the
MAC and RLC layers, LLFUZZ chooses a specific PDCP
structure and generates a valid PDCP PDU. It temporarily
assigns legitimate values to the fields in the PDCP header.
Note that PDCP packets do not include multiple sub-headers,
sub-payloads, or data chunks.
Step 2 : Packet truncation. LLFUZZ truncates the legitimate
PDCP PDU to create both valid and malformed test cases. For
example, for the PDCP Data PDU for the control plane, it
truncates the PDU to 1-5 bytes, which is shorter than the
minimum length of 6 bytes.
Step 3 : Header mutation. Then, LLFUZZ mutates the re-
maining fields in the PDCP header, such as R and SN. It applies
the same mutation strategy as in the MAC and RLC layers,
focusing on boundary values and a few representative legit-
imate values. For example, for the 12-bit SN field, LLFUZZ
mutates it to 2i −1 for i ranging from 0 to 12.
Step 4 : Mapping to logical channel. To deliver PDCP
test cases to the intended logical channels in the baseband,
LLFUZZ encapsulates them step-by-step through the RLC and
MAC layers. It first wraps the PDCP PDU in an RLC PDU,
selecting the structure based on whether the target is control
or data plane. Then, it encapsulates the RLC PDU in a MAC
PDU, setting the LCID and L fields to guide packet routing.
For example, when testing DRBs mapped to DTCH, LLFUZZ
uses an RLC UM Data PDU (as srsENB typically does for
DRBs) and sets LCID to 3 with the appropriate length.

D.4 PHY Layer (DCI Messages)
LLFUZZ treats Downlink Control Indicator (DCI) structures
as complete headers for generating test cases. Since the PHY
layer automatically pads missing bytes with zeros before trans-
mission, LLFUZZ does not apply truncation-based mutations
at this layer. The following steps detail the DCI test case
generation process:
Step 1 : Generate initial DCI messages. Based on the cur-
rent eNB configuration (e.g., bandwidth, TDD/FDD mode,
transmission mode, CA), LLFUZZ selects the corresponding
DCI format from the specification and determines the bit
lengths of configuration-dependent fields. It then populates
the DCI message with legitimate field values captured from
normal transmissions. During this step, fields that define the
structure of the DCI message are fixed. For example, in DCI
format 1, LLFUZZ sets the first bit to 1 as it distinguishes
between formats 0 and 1.
Step 2 : Mutate the remaining fields. LLFUZZ mutates the
remaining fields in the DCI message, prioritizing those re-
lated to resource allocation and those containing reserved
values (e.g., Resource Allocation Type 0/1/2 fields,
Precoding Information). Similar to other layers, LLFUZZ
consistently follows the specification to select appropriate mu-
tation values, focusing on boundary, abnormal, reserved, and
on a few legitimate samples. For example, for the 17-bit Re-
source Allocation Type 0 field, LLFUZZ mutates the field to
0 and 2i − 1 for i ranging from 0 to 17. Typically, a single
UE should not use the whole bandwidth; thus, extreme values
such as 217 −1 are considered abnormal.
Step 3 : Allocate PDCCH resources for transmission. DCI
messages are transmitted to UEs over the Physical Downlink
Control Channel (PDCCH), where each message is encoded
into several Control Channel Elements (CCEs). LLFUZZ uses
the original srsENB allocation algorithms to allocate CCEs
for the generated DCIs, ensuring UE-specific values for suc-
cessful decoding by the target device.


	Introduction
	Background
	Cellular Protocol Stack
	Lower Layers in Basebands
	Attach Procedure

	Gaps in Previous Works
	Overview
	Scope of LLFUZZ
	Threat Model
	Challenges and Approaches
	Complex Messages with OTA Testing
	Diverse Messages across Multiple Channels
	Configurable Packet Structures during Attach Procedure


	Design
	LLFUZZ overview
	Channel-Oriented States in Lower Layers
	Identify Lower-Layer Packet Structures
	Test Case Generation
	Over-The-Air Testing
	Oracle for Detecting Crashes
	Post Analysis

	Implementation
	Evaluation
	Evaluation Setup
	Bug Discovery
	Performance
	Adapting LLFuzz for 5G Basebands
	Comparison with Existing Tools

	Case Study
	Discussion and Limitations
	Related Work
	Conclusion
	Acronyms
	Tested Devices
	More Case Studies
	B1: Incorrect Handling of the Length Field in the MAC Sub-Header
	B5: Incorrect Handling of MAC PDUs with Many MAC CE Sub-headers
	B6: Incorrect Handling of Continuously Malformed MAC PDUs During the Attach Procedure
	B7: Incorrect Handling of 5-byte PDCP Data PDUs for the Control Plane
	B8: Incorrect Handling of RLC AM Data PDUs Containing Many Data Chunks
	B9: Incorrect Handling of 1-byte PDCP Data PDUs for the User Plane

	Detailed Test Case Generation.
	MAC Layer
	RLC Layer
	PDCP Layer
	PHY Layer (DCI Messages)


